

Expected Science Performance of the SQUARE KILOMETRE ARRAY

astronomers.skatelescope.org

WHAT IS THE SKA?

- The SKA is an ambitious project to build radio telescopes that will enable breakthrough science and discoveries not possible with current facilities
- The telescopes will be located in Australia and South Africa
- When completed it will provide over one million square metres of collecting area
- SKA is being built in two phases. Phase 1 (SKA1) is currently nearing the end of its design phase, with construction to start before the end of this decade

SKA ORGANISATION \rightarrow SKA OBSERVATORY

- The SKA Organisation consists of **10 Member countries** (Australia, Canada, China, India, Italy, Netherlands, New Zealand, South Africa, Sweden, UK), with headquarters on site at Jodrell Bank Observatory.
- Over 600 engineers and scientists are undertaking detailed design work in the member countries and beyond (incl. Germany, Spain, France, Portugal, Switzerland, Malta, ...) at a cost of over €200M.
- Critical Design Reviews at element and system level in 2018.
- Construction approval expected at end of 2019

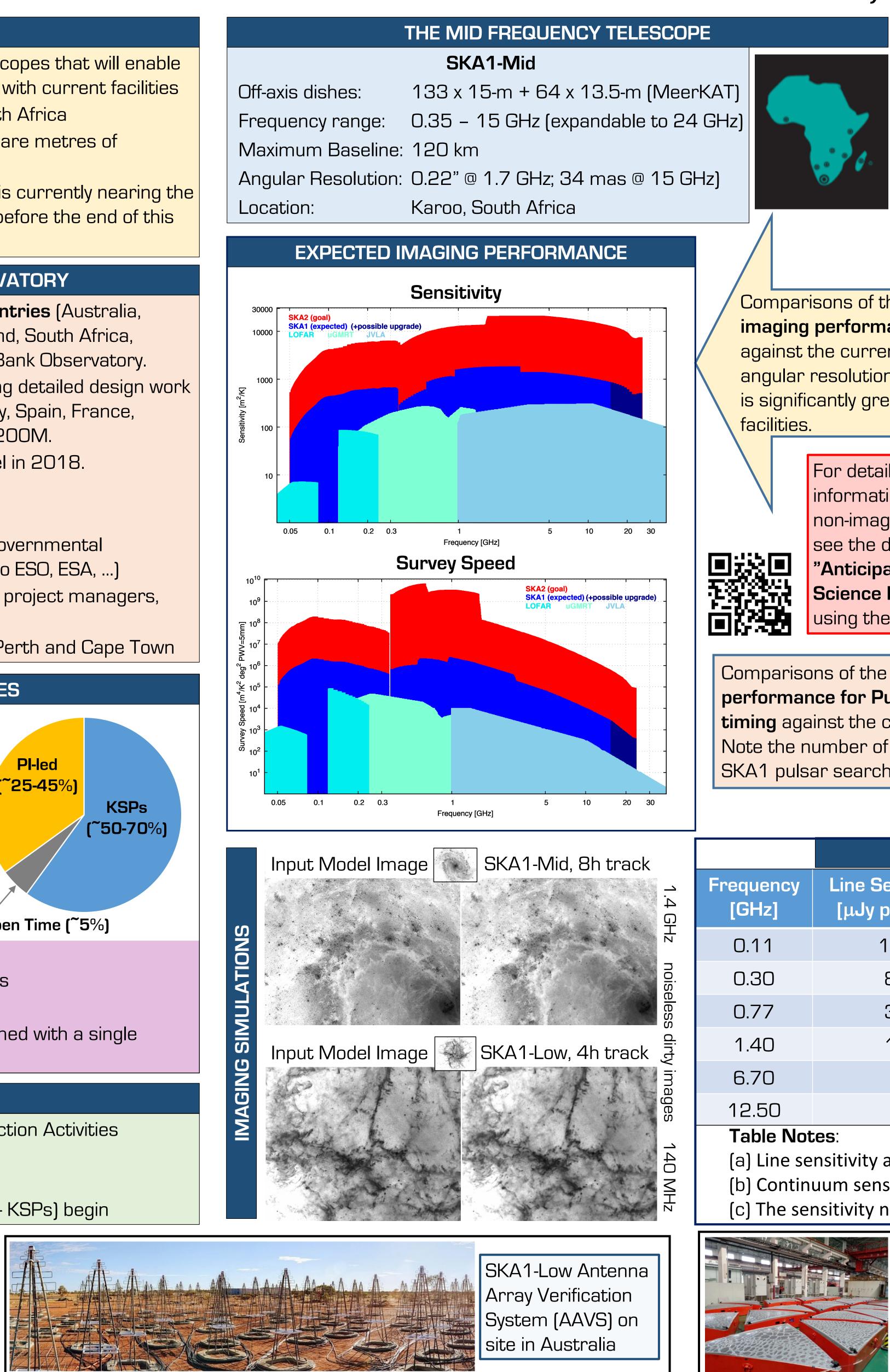
SKA OBSERVATORY

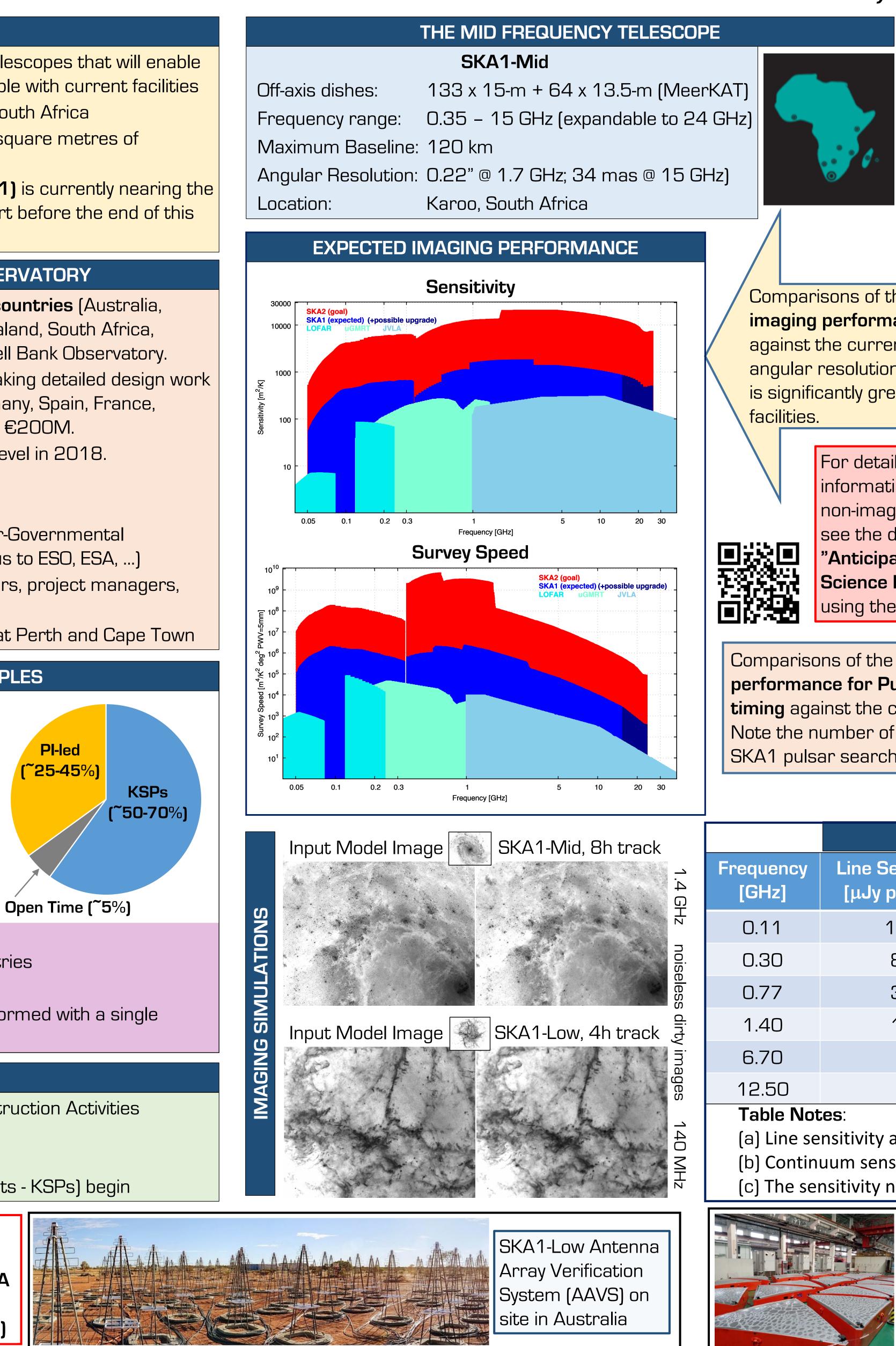
- Member countries currently negotiating an Inter-Governmental Organisation (IGO) structure for SKAO (analogous to ESO, ESA, ...)
- Headquarters in the UK, with scientists, engineers, project managers, operations staff.
- Data processed and archived in host countries at Perth and Cape Town

OBSERVING ACCESS PRINCIPLES

- **KEY SCIENCE PROJECTS (KSPs)**
- Large programs (>1000 h) performed over multiple semesters (nominally 1 year)
- PI & management team from SKA-member countries; co-ls from any country
- Expected to provide added-value data products and tools back to SKAO

PRINCIPAL INVESTIGATOR (PI) PROJECTS


- Small programs (<1000 h) performed within a single semester
- PI and majority of co-Is from SKA-member countries **OPEN TIME (~5% of available time)**
- Small programs led by PI from any country, performed with a single semester


TIMELINE – KEY DATES

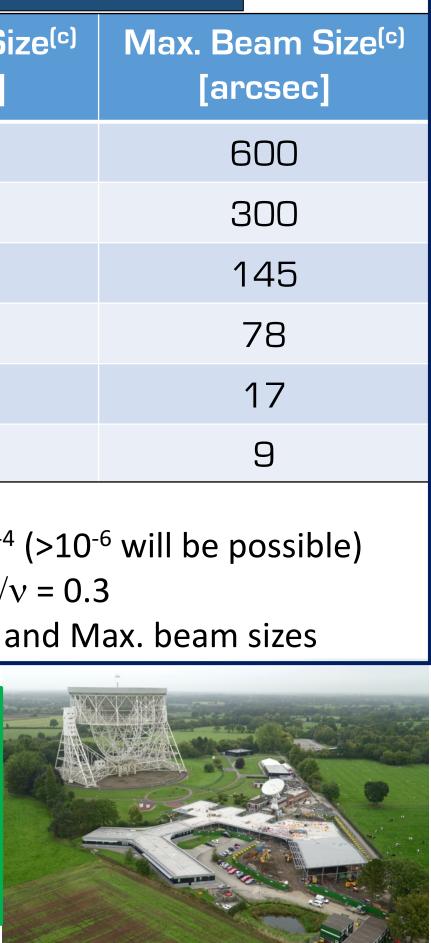
2019	End of Design Phase, start of Construction Activities	
2022	Science Commissioning begins	
2026	Shared Risk Science begins	
2027/28	Large Projects (Key Science Projects - KSPs) begin	

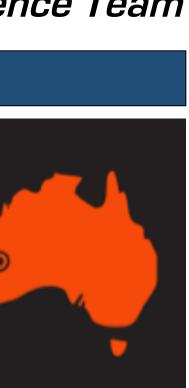
The updated SKA Science Case: Advancing Astrophysics with the SKA Individual chapters can be found via the **QR code (left)**

Poster available via this QR under "Presentations"

Tyler Bourke, SKA Project Scientist, on behalf of the SKA Science Team

	TH	IE LOW FREQUENCY TELESCOPE	
	Frequency range:5Maximum Baseline:6Angular Resolution:1	SKA1-Low ~131,000 log-periodic dipoles 50 – 350 MHz 55 km 11" @ 110 MHz; 3.5" @ 350 MHz Murchison, Western Australia	
		EXPECTED PULSAR PERF	ORMA
performant he current resolution of antly greate for details a information non-imaging see the doc "Anticipate Science Pe	on imaging and g performance ument	Arecibo (7 beams) SK/ 500	A1-Mid PSR Timir A1-Mid PSR Surve erKAT PSR Timin erKAT PSR Searc
ce for Puls inst the cur	Apected SKA ar surveys and rent best facilities. eams available for nd timing.	(Store from Array Centre, or Size of Tel	TPSR Search (40 1000 lescope [m]


IMAGING SENSITIVITIES IN ONE-HOUR INTEGRATIONS				
Line Sensitivity ^(a) [µJy per beam]	Continuum Sensitivity ^(b) [µJy per beam]	Min. Beam Size ^(c) [arcsec]	Max. Bea [arc	
1850	26.0	12.00	60	
800	14.0	6.00	30	
300	4.4	1.00	14	
140	2.0	0.60	7	
90	1.3	0.13	1	
85	1.2	0.07	(


[a] Line sensitivity assumes fractional bandwidth per channel of $\Delta v/v = 10^{-4}$ (>10⁻⁶ will be possible) (b) Continuum sensitivity assumes fractional bandwidth per channel of $\Delta v/v = 0.3$ (c) The sensitivity numbers apply to the range of beam sizes given by Min. and Max. beam sizes

> SKA1-Mid prototype dish production in China

SKAO HQ expansion at Jodrell Bank Observatory, UK

NCE				
ning	(16 beams)			
vey	(1500 beams)			
ing	(4 beams)			
rch	(400 beams)			
1 7	.8 2			
SR S	Survey (1500 beams)			
100	beams)			