SKA SWG Update

SQUARE KILOMETRE ARRAY

Exploring the Universe with the world's largest radio telescope

Robert Braun, Science Director

8 May 2018

SKA Board Meeting 26 Outcomes

- 11 12 April, Gothenburg, Sweden
- Bridging Plan: (covering interval between design element CDRs and System CDR/Construction Proposal)
 - Board approves centralised management approach and overall activity scope (about 66 FTE years)
- Early Production Arrays
 - Board endorses development of implementation plan
- Operations Model Review
 - Board endorses Panel recommendation of partnership model rather than Service Level Agreements for Telescope Operations, instructs further development

CDR Activity – Updates

Element	RRN Submission	CDR Submission	CDR Meeting		
SaDT & SAT	17 January 2018	28 February 2018	15-18 May 2018		
ТМ	29 January 2018	28 February 2018	17-20 Apr		
CSP	18 May 2018- PSS Sub-Element CDR- PST Sub-Element CDR- CBF-Low Sub-El CDR- CBF-Mid Sub-El CDR	<u>30 June 2018</u>	<u>25 – 28 Sept 2018</u>		
INAU	19 March 2018	30 April 2018	27-29 June 2018		
INSA	19 March 2018	30 April 2018	2-4 July 2018		
LFAA	30 March 2018	TBD	TBD		
System CDR (incl. AIV) close	See Roadmap	See Roadmap	30 March 2019		
SDP	17 September 2018	31 October 2018	<u>31 December 2018</u>		
DSH	ECP Pending - SPF B2 Sub-element CDR	ECP Pending	ECP Pending		

Green: Successful phase Red: Potential schedule change Blue: Updated from last report

Element CDRs

- SADT over 1000 observations; review meeting still on track for mid-May
- TM CDR passed, now focused on closing out some 500 review tickets
- **CSP** Sub-system CDR reports have been released
- INFRA passed the Review Readiness for their CDR and delivered packs
- **SDP** passed the Readiness Review for their pre-CDR and delivered the pack
- LFAA Readiness Review unsuccessful, see below
- **DSH** Some delays to dish structure; sub-element CDRs planned throughout 2018, a few in early 2019

LFAA Recovery Plan

- Integrated Resolution Teams with substantial SKAO support
- Goal of keeping overall delay below 5 months

Two different implementations of new optimised EM design tested at MRO during week of 9 – 13 April

Testing of SKALA4 Prototypes

 Good prospects for flatter bandpass and generally improved performance (apparent high frequency cut-off at 300 MHz is artifact of measurement method)

SKA1 Science HPC Requirements

- In-depth study of SKA1 computing requirements from Science perspective underway
- SDP Parametric Model key parameters:
 - Use-Case Parameters: ${\sf B}_{\sf Max}$, $\nu_{\sf Min}$ and $\nu_{\sf Max}$, ${\sf T}_{\sf Point}$ (total depth for pointing)
 - Calibration Parameters: N_{Ateam} , N_{Source} , $N_{SelfCal}$, N_{Major} , $N_{Ipatches}$ all are strong functions of (B_{Max} , v and T_{Point})
 - Model for functional dependence of the Calibration parameters on the Use-case parameters
 - Improvements ongoing to: source population numbers and sizes, dish/station beams

Station/Dish Beam models

• Improved beam modelling of both SKA1-Low stations and SKA1-Mid dishes for integration of source counts, including side-lobes

SKA1 Calibration Requirements

v _{min} (GHz)	ν _c (GHz)	ν _{max} (GHz)	Sub- band	Band	N _{Ateam}	N _{Source}	S _{Max} (Jy)	S _{Min} (Jy)	N _{SelfCal} / N' _{SelfCal}	N _{Maj} / N' _{Maj}	N Ipatch
0.050	0.060	0.069	Low sb1		19	36820	68	14m	6/1	3/1	336
0.069	0.082	0.096	Low sb2		15	35270	32	3.9m	6/1	3/1	180
0.096	0.114	0.132	Low sb3		12	28390	14	1.4m	5/1	3/1	93
0.132	0.158	0.183	Low sb4		10	24760	6.3	0.7m	5/1	3/1	48
0.183	0.218	0.253	Low sb5		9	17050	2.8	0.5m	5/1	3/1	25
0.253	0.302	0.350	Low sb6		8	9602	1.3	0.5m	5/1	2/1	20
0.35	0.41	0.48	Mid sb1	B1	8	29860	2.0	0.3m	6/1	3/1	36
0.48	0.56	0.65	Mid sb2	B1	5	25140	0.9	0.1m	6/1	3/1	20
0.65	0.77	0.89	Mid sb3	B1	3	21530	0.4	60µ	5/1	3/1	20
0.89	1.05	1.21	Mid sb4	B2	2	18770	0.2	20µ	5/1	3/1	20
1.21	1.43	1.65	Mid sb5	B2	1	16290	90m	15µ	5/1	3/1	20
1.65	1.95	2.25	Mid sb6		0	11430	50m	9μ	5/1	3/1	20
2.25	2.66	3.07	Mid sb7		0	6660	31m	7μ	5/1	3/1	20
3.07	3.63	4.18	Mid sb8		0	3770	20m	6μ	5/1	3/1	20
4.18	4.94	5.70	Mid sb9	B5a	0	2087	13m	5μ	5/1	2/1	20
5.70	6.74	7.78	Mid sb10	B5a	0	1117	8m	4μ	4/1	2/1	20
7.78	9.19	10.61	Mid sb11	B5b	0	582	5m	4μ	4/1	2/1	20
10.61	12.53	14.46	Mid sb12	B5b	0	293	3m	3μ	4/1	2/1	20

 Modelled calibration parameters that should permit ~thermal noise limited data products within very deep integrations

SKA1 HPC Requirements

• Instantaneous HPC load as function of (B_{Max}, v, T_{Point})

- New estimates now in preparation of the use case mix that can be supported with various size HPC deployments
- Even modest HPC can provide significant science return, albeit with duty cycle limitations for the more demanding experiments

SKA1 HPC Caveats

- Computational efficiency assumed to be 10%; could be much better (LOFAR EoR GPU-based pipeline achieving >80% efficiency)
- Better representation of Direction Dependent Calibration methods needed in Parametric model
- HPC costs completely dominated by DFT; could be reduced with partial FFT usage; could be implemented with much higher than 10% efficiency (as noted above for GPUs)

SQUARE KILOMETRE ARRAY

